Hva er funksjoner?

Meny
Definisjons- og verdimengde

Hva er definisjonsmengden og verdimengden til en funksjon?

Definisjons- og verdimengde til en funksjon er mengdene av inngangs- og utgangsverdier for funksjonen. Denne videoen går i detalj for å forklare hvordan de fungerer.

To further explore the concept of domain and range, let's consider another example involving a quadratic function. Suppose we have the function . The graph of this function is a parabola that opens upwards. To determine the domain of , we need to identify all possible x-values that can be input into the function. Since squaring any real number is always possible, the domain of , denoted as , is the set of all real numbers, .

Next, let's examine the range of . The range consists of all possible y-values that the function can output. Observing the graph, we see that the parabola starts at the origin (0,0) and extends infinitely upwards. This means the smallest y-value is 0, and there is no upper limit. Therefore, the range of , denoted as , is the set of all non-negative real numbers, . This example illustrates how the shape and direction of a graph can help us determine the domain and range of a function.