Brøk (Pluss og minus med ulike nevnere)

Bootcamps

Vil du se animasjonsvideoer og løse interaktive oppgaver om brøk? Trykk her for å prøve Bootcamps!

Når nevnerne i brøkene er ulike, må du utvide eller forkorte brøkene slik at de får lik nevner. Dette endrer ikke brøkens verdi. Å utvide eller forkorte brøker slik at de får lik nevner, kalles å finne fellesnevner. Det finnes ulike metoder for å finne fellesnevner:

Å gange nevnerne med hverandre:

Dette vil alltid fungere, men du kan havne med veldig store tall som gjør utregningen unødig komplisert.

Å forkorte den ene brøken:

Dersom den ene brøken kan forkortes slik at nevnerne blir like, sparer du mye arbeid.

Å utvide den ene brøken:

Dersom den ene brøken kan utvides slik at nevnerne blir like, blir utregningen lettere.

Å finne minste fellesnevner:

På denne måten finner du alltid de letteste og peneste tallene å jobbe med. Jeg anbefaler at du fokuserer på denne.

Når du skal addere brøker med ulik nevner, må du først finne fellesnevneren. Deretter må du utvide eller forkorte brøken slik at du ender opp med fellesnevneren i brøkens nevner. Til slutt legger du sammen tellerne som om det var et vanlig plusstykke.

Formel

Addisjon av brøk med ulike nevnere

a c + b d = a d c d + b c d c = ad + bc cd

Tallinje som illustrerer addisjon av brøker med ulik nevner

Formel

Subtraksjon av brøk med ulik nevner

a c b d = a d c d b c d c = ad bc cd

Når du skal subtrahere brøker med ulik nevner, må du først finne fellesnevneren. Deretter må du utvide eller forkorte brøken slik at du ender opp med fellesnevneren i brøkens nevner. Så trekker du tellerne fra hverandre som om det var et vanlig minusstykke.

Tallinje som illustrerer subtraksjon av brøker med ulik nevner

Selv om det bare er én formel for addisjon og én for subtraksjon med ulike nevnere, foregår fellesnevnerprosessen på flere måter. På de neste sidene følger de mest brukte.

Vil du vite mer?Registrer degDet er gratis!